交错级数是正项和负项交替出现的级数,在交错级数中,常用莱布尼茨判别法来判断级数的收敛性,即若交错级数各项的绝对值单调递减且极限是零,则该级数收敛。
由莱布尼茨判别法可得到交错级数的余项估计,最典型的交错级数是交错调和级数;若级数的各项符号正负相间,叫作交错级数。交错级数的项就是正负相间。
交错级数的审敛法莱布尼茨定理也称为乘积法则,是数学中关于两个函数的积的导数的一个计算法则,不同于牛顿-莱布尼茨公式,莱布尼茨公式用于对两个函数的乘积求取其高阶导数,一般的,如果函数u=u(x)与函数v=v(x)在点x处都具有n阶导数。