对于抛物线y = ax^2 + bx + c 用导数求在(x0,y0)点的斜率k = 2a*x0 然后用点斜式写出在(x0,y0)点的切线方程是:y-y0 = 2a*x0(x-x0) 如果抛物线焦点在x轴上,则写出x与y的二次表达式,将x0和y0交换即可。
平面内到一个定点F(焦点)和一条定直线l(准线)距离相等的点的轨迹。它有许多表示方法,例如参数表示,标准方程表示等等。它在几何光学和力学中有重要的用处。抛物线是该平面中与准线和焦点等距的点的轨迹。抛物线的另一个描述是作为圆锥截面,由右圆锥形表面和平行于与锥形表面相切的另一平面的平面的交点形成。第三个描述是代数。