材料在静载荷外力作用下抵抗塑性变形和断裂的能力,称为材料的强度。材料的强度指标是通过拉伸试验来测定的。常用的强度指标有:弹性极限、屈服极限和强度极限。 弹性极限:用来表示材料发生纯弹性变形的最大限度。当金属材料单位横截面积受到的拉伸外力达到这一限度以后,材料将发生弹塑性变形。对应于这一限度的应力值,称为材料的弹性极限。 屈服极限:用来表示材料抵抗微小塑性变形的能力。屈服极限又分为物理屈服极限和条件屈服极限。如果材料受到的载荷外力达到某一数值后,当外力不再增加而变形继续进行,此时称材料发生了"屈服"。这时所对应的载荷应力,叫做该材料的物理屈服极限。但是,对于有些没有明显屈服现象的金属材料,如高碳钢、合金钢等,则规定产生0。2的微小塑性变形时的应力,叫做材料的条件屈服极限。金属材料受到的载荷应力达到屈服极限时,材料在产生弹性变形的同时,开始产生微小的塑性变形。 强度极限:材料抵抗外力破坏作用的最大能力,称为材料的强度极限。也就是说,当材料横截面上受到的拉应力达到材料的强度极限时,材料就会被拉断。 工程中进行强度设计时,是根据对部件的工作要求来选取强度指标的。例如镗床的镗杆、发动机汽缸、火炮炮身管,在工作时不允许产生塑性变形,才能保证足够的精度。这时,应选用弹性极限作为强度设计时确定许用应力的参数。但是,对于大多数机械零部件,允许工作时产生少量的塑性变形,并不影响机器的正常运行,也能保证其配合精度。这时,应选用屈服极限作为 强度设计的依据。另外,对于如铸铁件、钢丝绳等部件,只要不产生断裂,就不会影响其工作。故这类部件常以强度极限作为强度设计时,确定许用应力的依据。